www.ncrtsolutions.in

CHAPTER - 2

WHOLE NUMBERS

- The numbers $1,2,3, \ldots \ldots$ which we use for counting are known as natural numbers.
- If you add 1 to a natural number, we get its successor. If you subtract 1 from a natural number, you get its predecessor.
- Every natural number has a successor. Every natural number except 1 has a predecessor.
- If we add the number zero to the collection of natural numbers, we get the collection of whole numbers. Thus, the numbers $0,1,2,3, \ldots$ form the collection of whole numbers.
- Every whole number has a successor. Every whole number except zero has a predecessor.
- All natural numbers are whole numbers, but all whole numbers are not natural numbers.
- We take a line, mark a point on it and label it 0 . We then mark out points to the right of 0 , at equal intervals. Label them as $1,2,3, \ldots$. Thus, we have a number line with the whole numbers represented on it. We can easily perform the number operations of addition, subtraction and multiplication on the number line.
- Addition corresponds to moving to the right on the number line, whereas subtraction corresponds to moving to the left. Multiplication corresponds to making jumps of equal distance starting from zero.
- Adding two whole numbers always gives a whole number. Similarly, multiplying two whole numbers always gives a whole number. We say that whole numbers are closed under addition and also under multiplication. However, whole numbers are not closed under subtraction and under division.
- Division by zero is not defined.
- Zero is the identity for addition of whole numbers. The whole number 1 is the identity for multiplication of whole numbers.
- You can add two whole numbers in any order. You can multiply two whole numbers in any order. We say that addition and multiplication are commutative for whole numbers.
- Addition and multiplication, both, are associative for whole numbers.
- Multiplication is distributive over addition for whole numbers.
- Commutativity, associativity and distributivity properties of whole numbers are useful in simplifying calculations and we use them without being aware of them.
- Patterns with numbers are not only interesting, but are useful especially for verbal calculations and help us to understand properties of numbers better.

