<u>Set</u> - A collection of objects. The specific objects within the set are called the <u>elements</u> or <u>members</u> of the set. Capital letters are commonly used to name sets.

Examples: Set $A = \{a, b, c, d\}$ or Set $B = \{1, 2, 3, 4\}$

- <u>Set Notation</u> Braces { } can be used to list the members of a set, with each member separated by a comma. This is called the "<u>Roster Method</u>." A description can also be used in the braces. This is called "<u>Set-builder</u>" notation.
 - Example:
 Set A: The natural numbers from 1 to 10.
 Roster Method

 Members of A:
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 \checkmark

 Set Notation:
 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ Set Builder Not.: $\{x | x \text{ is a natural number from 1 to 10}\}$
- <u>Ellipsis</u> Three dots (...) used within the braces to indicate that the list continues in the established pattern. This is helpful notation to use for *long lists* or *infinite lists*. If the dots come at the end of the list, they indicate that the list goes on indefinitely (i.e. an infinite set).
 - **Examples:** Set A: Lowercase letters of the English alphabetSet Notation: $\{a, b, c, ..., z\}$

<u>Cardinality of a Set</u> – The number of *distinct* elements in a set.

- Example: Set A: The days of the week Members of Set A: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday Cardinality of Set A = n(A) = 7
- **Equal Sets** Two sets that contain exactly the same elements, regardless of the order listed or possible repetition of elements.
 - **Example:** $A = \{1, 1, 2, 3, 4\}$, $B = \{4, 3, 2, 1, 2, 3, 4, \}$.

Sets *A* and *B* are equal because they contain exactly the same elements (i.e. 1, 2, 3, & 4). This can be written as A = B.

Equivalent Sets – Two sets that contain the same number of distinct elements.

Example:
$$A = \{Football, Basketball, Baseball, Soccer\}$$
Both Sets have 4
elements $B = \{penny, nickel, dime, quarter\}$ elements $n(A) = 4$ and $n(B) = 4$ A and B are Equivalent Sets, meaning $n(A) = n(B)$.

Note: If two sets are <u>Equal</u>, they are <u>also Equivalent</u>!

Example:Set
$$A = \{a, b, c, d\}$$
Set $B = \{d, d, c, c, b, b, a, a\}$ Are Sets A and B Equal?Sets A and B have the
exact same elements!
 $\{a, b, c, d\}$ \rightarrow Yes!Are Sets A and B
Equivalent?Sets A and B have the
exact same number of
 $\frac{distinct}{distinct}$ elements!
 $n(A) = n(B) = 4$ \rightarrow Yes!

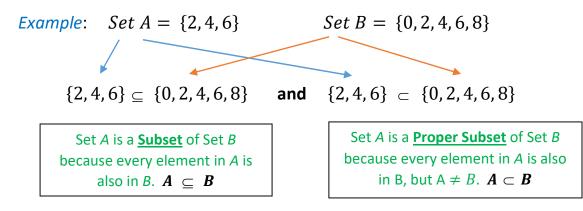
The Empty Set (or Null Set) –The set that contains no elements.It can be represented by either { } or Ø.

Note: Writing the empty set as $\{\emptyset\}$ is **not correct**!

Symbols commonly used with Sets -

- $\in \rightarrow$ indicates an object is an **element** of a set.
- $\notin \rightarrow$ indicates an object is **not** an element of a set.
- $\subseteq \rightarrow$ indicates a set is a **subset** of another set.
- $_{\subset} \rightarrow$ indicates a set is a **proper subset** of another set.
- $\cap \rightarrow$ indicates the **intersection** of sets.
- $\cup \rightarrow$ indicates the **union** of sets.

- Subsets For Sets A and B, Set A is a Subset of Set B if every element in Set A is also in Set *B*. It is written as $A \subseteq B$.
- **Proper Subsets** For Sets A and B, Set A is a **Proper Subset** of Set B if every element in Set A is also in Set B, but Set A does not equal Set B. $(A \neq B)$ It is written as $A \subset B$.



Note: The Empty Set is a Subset of every Set.

The Empty Set is also a Proper Subset of every Set except the Empty Set.

- Number of Subsets The number of distinct subsets of a set containing n elements is given by 2^n .
- Number of Proper Subsets The number of distinct proper subsets of a set containing n elements is given by $2^n - 1$.

Example: How many Subsets and Proper Subsets does Set A have?

Set A = {*bananas*, *oranges*, *strawberries*} n = 3

Subsets = $2^n = 2^3 = 8$ **Proper Subsets** = $2^n - 1 = 7$

Example: List the **Proper Subsets** for the Example above.

- 1. {bananas} {bananas, strawberries} 5.
- 2. {oranges} *{oranges, strawberries}* 6. Ø
- 3. {strawberries} 7.
- 4. {*bananas*, *oranges*}

Intersection of Sets – The Intersection of Sets A and B is the set of elements that are in both A and B, *i.e.* what they have in common. It can be written as $A \cap B$.

<u>Union of Sets</u> – The Union of Sets *A* and *B* is the set of elements that are members of Set *A*, Set *B*, or both Sets. It can be written as $A \cup B$.

Example: Find the <u>Intersection</u> and the <u>Union</u> for the Sets *A* and *B*.

Set $A = \{Red, Blue, Green\}$ Set $B = \{Yellow, Orange, Red, Purple, Green\}$ Intersection: $A \cap B = \{Red, Green\}$

Set A and B only have 2 elements in common.

Union: $A \cup B = \{Red, Blue, Green, Yellow, Orange, Purple\}$

List each distinct element only once, even if it appears in both Set A and Set B.

Complement of a Set - The Complement of

Find A'.

Set A, written as A', is the set of all elements in the given Universal Set (U), that are not in Set A.

Example: Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A = \{1, 3, 5, 7, 9\}$

Cross off everything in U that is also in A. What is left over will be the elements that are in A'

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

So,
$$A' = \{2, 4, 6, 8, 10\}$$

Try these on your own!

Given the set descriptions below, answer the following questions.

U = All Integers from 1 to 10. A = Odd Integers from 1 to 10,

 $B = Even Integers from 1 to 10, \quad C = Multiples of 2 from 1 to 10.$

1.	Write each of the sets in roster notation.	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 3, 5, 7, 9\},\$ $B = \{2, 4, 6, 8, 10\}, C = \{2, 4, 6, 8, 10\}$
2.	What is the <i>cardinality</i> of Sets U and A?	Cardinality: $U \rightarrow 10$, $A \rightarrow 5$
3.	Are Set <i>B</i> and Set <i>C Equal</i> ?	Yes, they are Equal
4.	Are Set A and Set C Equivalent?	Yes, they are Equivalent
5.	How many <i>Proper Subsets</i> of Set <i>U</i> are there	? $2^{10} - 1 = 1023$
6.	Find B 'and C '	$B' = C' = \{1, 3, 5, 7, 9\}$
7.	Find $A \cup C'$	$A \cup C' = \{1, 3, 5, 7, 9\}$
8.	Find $B' \cap C$	$B' \cap C = \{ \} \text{ or } \emptyset$