## **Angles Associated with Parallel Lines**

Use the diagram to answer Questions 1 and 2. In the diagram, lines  $L_1$  and  $L_2$  are intersected by transversal m, forming angles 1–8, as shown.



1. If  $L_1 \parallel L_2$ , what do know about  $\angle 2$  and  $\angle 6$ ? Use informal arguments to support your claim.

2. If  $L_1 \parallel L_2$ , what do know about  $\angle 1$  and  $\angle 3$ ? Use informal arguments to support your claim.

Use the diagram below to do Problems 1–6.



- 1. Identify all pairs of corresponding angles. Are the pairs of corresponding angles equal in measure? How do you know?
- 2. Identify all pairs of alternate interior angles. Are the pairs of alternate interior angles equal in measure? How do you know?
- Use an informal argument to describe why  $\angle 1$  and  $\angle 8$  are equal in measure if  $L_1 \parallel L_2$ .
- Assuming  $L_1 \parallel L_2$  if the measure of  $\angle 4$  is 73°, what is the measure of  $\angle 8$ ? How do you know?
- Assuming  $L_1 \parallel L_2$ , if the measure of  $\angle 3$  is  $107^{\circ}$  degrees, what is the measure of  $\angle 6$ ? How do you know?
- Assuming  $L_1 \parallel L_2$ , if the measure of  $\angle 2$  is  $107^\circ$ , what is the measure of  $\angle 7$ ? How do you know?
- Would your answers to Problems 4–6 be the same if you had not been informed that  $L_1 \parallel L_2$ ? Why, or why not?
- Use an informal argument to describe why  $\angle 1$  and  $\angle 5$  are equal in measure if  $L_1 \parallel L_2$ .
- Use an informal argument to describe why  $\angle 4$  and  $\angle 5$  are equal in measure if  $L_1 \parallel L_2$ .
- 10. Assume that  $L_1$  is not parallel to  $L_2$ . Explain why  $\angle 3 \neq \angle 7$ .

Use the diagram to answer Questions 1 and 2. In the diagram, lines  $L_1$  and  $L_2$  are intersected by transversal m, forming angles 1-8, as shown.



If  $L_1 \parallel L_2$ , what do know about  $\angle 2$  and  $\angle 6$ . Use informal arguments to support your claim.

They are alternate interior angles because they are on opposite sides of the transversal and inside of lines  $L_1$  and  $L_2$ . Also, the angles are equal in measure because the lines  $L_1$  and  $L_2$  are parallel. If we rotated angle 2 around the midpoint of the segment between the parallel lines, then it would map onto angle 6.

If  $L_1 \parallel L_2$ , what do know about  $\angle 1$  and  $\angle 3$ ? Use informal arguments to support your claim.

They are corresponding angles because they are on the same side of the transversal and above each of lines  $L_1$  and  $\it L_{
m 2}$ . Also, the angles are equal in measure because the lines  $\it L_{
m 1}$  and  $\it L_{
m 2}$  are parallel. If we translated angle 1 along a vector (the same length as the segment between the parallel lines), then it would map onto angle 3.

Students practice identifying corresponding, alternate interior, and alternate exterior angles from a diagram.

