Worksheet 2.6 Factorizing Algebraic Expressions

Section 1 Finding Factors

Factorizing algebraic expressions is a way of turning a sum of terms into a product of smaller ones. The product is a multiplication of the factors. Sometimes it helps to look at a simpler case before venturing into the abstract. The number 48 may be written as a product in a number of different ways:

$$
48=3 \times 16=4 \times 12=2 \times 24
$$

So too can polynomials, unless of course the polynomial has no factors (in the way that the number 23 has no factors). For example:

$$
x^{3}-6 x^{2}+12 x-8=(x-2)^{3}=(x-2)(x-2)(x-2)=(x-2)\left(x^{2}-4 x+4\right)
$$

where $(x-2)^{3}$ is in fully factored form.
Occasionally we can start by taking common factors out of every term in the sum. For example,

$$
\begin{aligned}
3 x y+9 x y^{2}+6 x^{2} y & =3 x y(1)+3 x y(3 y)+3 x y(2 x) \\
& =3 x y(1+3 y+2 x)
\end{aligned}
$$

Sometimes not all the terms in an expression have a common factor but you may still be able to do some factoring.

Example 1:

$$
9 a^{2} b+3 a^{2}+5 b+5 b^{2} a=3 a^{2}(3 b+1)+5 b(1+b a)
$$

Example 2 :

$$
\begin{aligned}
10 x^{2}+5 x+2 x y+y & =5 x(2 x+1)+y(2 x+1) \quad \text { Let } T=2 x+1 \\
& =5 x T+y T \\
& =T(5 x+y) \\
& =(2 x+1)(5 x+y)
\end{aligned}
$$

Example 3 :

$$
\begin{aligned}
x^{2}+2 x y+5 x^{3}+10 x^{2} y & =x(x+2 y)+5 x^{2}(x+2 y) \\
& =\left(x+5 x^{2}\right)(x+2 y) \\
& =x(1+5 x)(x+2 y)
\end{aligned}
$$

Exercises:

1. Factorize the following algebraic expressions:
(a) $6 x+24$
(b) $8 x^{2}-4 x$
(c) $6 x y+10 x^{2} y$
(d) $m^{4}-3 m^{2}$
(e) $6 x^{2}+8 x+12 y x$

For the following expressions, factorize the first pair, then the second pair:
(f) $8 m^{2}-12 m+10 m-15$
(g) $x^{2}+5 x+2 x+10$
(h) $m^{2}-4 m+3 m-12$
(i) $2 t^{2}-4 t+t-2$
(j) $6 y^{2}-15 y+4 y-10$

Section 2 Some standard factorizations

Recall the distributive laws of section 1.10.

Example 1:

$$
\begin{aligned}
(x+3)(x-3) & =x(x-3)+3(x-3) \\
& =x^{2}-3 x+3 x-9 \\
& =x^{2}-9 \\
& =x^{2}-3^{2}
\end{aligned}
$$

Example 2 :

$$
\begin{aligned}
(x+9)(x-9) & =x(x-9)+9(x-9) \\
& =x^{2}-9 x+9 x-81 \\
& =x^{2}-81 \\
& =x^{2}-9^{2}
\end{aligned}
$$

Notice that in each of these examples, we end up with a quantity in the form $A^{2}-B^{2}$. In example 1, we have

$$
\begin{aligned}
A^{2}-B^{2} & =x^{2}-9 \\
& =(x+3)(x-3)
\end{aligned}
$$

where we have identified $A=x$ and $B=3$. In example 2, we have

$$
\begin{aligned}
A^{2}-B^{2} & =x^{2}-81 \\
& =(x+9)(x-9)
\end{aligned}
$$

where we have identified $A=x$ and $B=9$. The result that we have developed and have used in two examples is called the difference of two squares, and is written:

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

The next common factorization that is important is called a perfect square. Notice that

$$
\begin{aligned}
(x+5)^{2} & =(x+5)(x+5) \\
& =x(x+5)+5(x+5) \\
& =x^{2}+5 x+5 x+25 \\
& =x^{2}+10 x+25 \\
& =x^{2}+2(5 x)+5^{2}
\end{aligned}
$$

The perfect square is written as:

$$
(x+a)^{2}=x^{2}+2 a x+a^{2}
$$

Similarly,

$$
\begin{aligned}
(x-a)^{2} & =(x-a)(x-a) \\
& =x(x-a)-a(x-a) \\
& =x^{2}-a x-a x+a^{2} \\
& =x^{2}-2 a x+a^{2}
\end{aligned}
$$

For example,

$$
\begin{aligned}
(x-7)^{2} & =(x-7)(x-7) \\
& =x(x-7)-7(x-7) \\
& =x^{2}-7 x-7 x+7^{2} \\
& =x^{2}-14 x+49
\end{aligned}
$$

Exercises:

1. Expand the following, and collect like terms:
(a) $(x+2)(x-2)$
(b) $(y+5)(y-5)$
(c) $(y-6)(y+6)$
(d) $(x+7)(x-7)$
(e) $(2 x+1)(2 x-1)$
(f) $(3 m+4)(3 m-4)$
(g) $(3 y+5)(3 y-5)$
(h) $(2 t+7)(2 t-7)$
2. Factorize the following:
(a) $x^{2}-16$
(e) $16-y^{2}$
(b) $y^{2}-49$
(f) $m^{2}-36$
(c) $x^{2}-25$
(g) $4 m^{2}-49$
(d) $4 x^{2}-25$
(h) $9 m^{2}-16$
3. Expand the following and collect like terms:
(a) $(x+5)(x+5)$
(e) $(2 m+5)(2 m+5)$
(b) $(x+9)(x+9)$
(f) $(t+10)(t+10)$
(c) $(y-2)(y-2)$
(g) $(y+8)^{2}$
(d) $(m-3)(m-3)$
(h) $(t+6)^{2}$
4. Factorize the following:
(a) $y^{2}-6 y+9$
(e) $m^{2}+16 m+64$
(b) $x^{2}-10 x+25$
(f) $t^{2}-30 t+225$
(c) $x^{2}+8 x+16$
(g) $m^{2}-12 m+36$
(d) $x^{2}+20 x+100$
(h) $t^{2}+18 t+81$
