Cubes and Cube Roots Worksheet

Name	Date	Period

What does it mean to "cube" a number?

Fill in the chart:

1 ³ =	2 ³ =	3 ³ =	4 ³ =	5 ³ =
6 ³ =	7 ³ =	8 ³ =	9 ³ =	10 ³ =

The inverse of cubing a number is....

³ √8=	∛512=	∛ 125=	∛ 64=

How do you find the cube root of a non-perfect cube?

Example: what is the cube root of 30?

Well, $3 \times 3 \times 3 = 27$ and $4 \times 4 \times 4 = 64$, so we can guess the answer is between 3 and 4.

- Let's try 3.5: 3.5 × 3.5 × 3.5 = 42.875
- Let's try 3.2: 3.2 × 3.2 × 3.2 = 32.768
- Let's try 3.1: 3.1 × 3.1 × 3.1 = 29.791

We are getting closer, but very slowly \dots at this point, I get out my calculator and it says:

3.1072325059538588668776624275224

... but the digits just go on and on, without any pattern. So even the calculator's answer is **only an** approximation!

Practice: What 2 perfect cubes does ₹89 fall between?

Practice: Rounded to the nearest hundredth, what is the **₹102**?

Assignment:

Write the **square** or **cube** of each number.

A.
$$4^2 = 4 \times 4 = 16$$

B.
$$6^3 =$$

C.
$$10^3 =$$

D.
$$20^2 =$$

F.
$$17^2 =$$

Write the **sauare** root.

G.
$$36 = 6^2 64 = 64$$

G.
$$36 = 6^{2} 64 = 81 = 25 = 324 = 529 = 25 = 324 =$$

Write the **cube** root.

J.
$$125 = 5^3$$

J.
$$125 = \underline{5^3}$$
 $1,000 = \underline{64} = \underline{27} = \underline{8} = \underline{216} = \underline{\phantom{$

Use the chart on the back to determine which two whole numbers the non-perfect cube falls between:

 $\sqrt[3]{200}$ is between ______ and _____.

 $\sqrt[4]{4}$ is between _____ and _____.

 $\sqrt[3]{1,058}$ is between _____ and _____.

 $\sqrt[3]{65}$ is between _____ and _____.

 $\sqrt[3]{2,201}$ is between _____ and _____.

Using your calculator and rounding to the nearest hundredth, write the cube root:

∛200 = _____